An elementary characterization of unretractive graphs

نویسنده

  • Roland Kaschek
چکیده

The graphs studied in this paper are finite, undirected, without loops and multiple edges. A graph is called unretractive if it is isomorphic to each of its retracts. Unretractivity of graphs has been studied as a tool for generation and investigation of transformation groups. In particular the automorphism groups of graph products have been studied by Harary, Sabidussi, Hemminger, and Imrich and Klavzar. Knauer has studied various unretractive graphs and was mainly interested in algebraic properties of endomorphism monoids of graphs. The paper continues Knauer’s research. A condition is proposed that involves only elementary properties of graphs and characterizes unretractive graphs. The utility of that condition is shown by proving the unretractivity of a number of graphs or families of graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1-factors and Characterization of Reducible Faces of Plane Elementary Bipartite Graphs

As a general case of molecular graphs of benzenoid hydrocarbons, we study plane bipartite graphs with Kekulé structures (1-factors). A bipartite graph G is called elementary if G is connected and every edge belongs to a 1-factor of G. Some properties of the minimal and the maximal 1-factor of a plane elementary graph are given. A peripheral face f of a plane elementary graph is reducible, if th...

متن کامل

An Alexandroff topology on graphs

Let G = (V,E) be a locally finite graph, i.e. a graph in which every vertex has finitely many adjacent vertices. In this paper, we associate a topology to G, called graphic topology of G and we show that it is an Alexandroff topology, i.e. a topology in which intersec- tion of every family of open sets is open. Then we investigate some properties of this topology. Our motivation is to give an e...

متن کامل

A CHARACTERIZATION FOR METRIC TWO-DIMENSIONAL GRAPHS AND THEIR ENUMERATION

‎The textit{metric dimension} of a connected graph $G$ is the minimum number of vertices in a subset $B$ of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $B$‎. ‎In this case‎, ‎$B$ is called a textit{metric basis} for $G$‎. ‎The textit{basic distance} of a metric two dimensional graph $G$ is the distance between the elements of $B$‎. ‎Givi...

متن کامل

Deterministic Soliton Graphs

Soliton graphs are studied in the context of a reduction procedure that simplifies the structure of graphs without affecting the deterministic property of the corresponding automata. It is shown that an elementary soliton graph defines a deterministic automaton iff it reduces to a graph not containing even-length cycles. Based on this result, a general characterization is given for deterministi...

متن کامل

Vertex Decomposable Simplicial Complexes Associated to Path Graphs

Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007